Search
Create a comparison
Compare Sizes
Register
Sign in
Sign out
English
Français
Español
History of
DEEP COGNITION - Deep Learning Studio
Last update
2018-04-04 10:22:42
Creation date
2018-03-25 22:14:35
PALYGAP
on 2018-04-04 10:22:42
Report
Development Activity
Important (2 enhanced versions have been release recently)
PALYGAP
on 2018-04-03 21:26:56
Report
Live performance monitoring
yes
Results browser
yes
View Valid/test set inference
yes
Confusion matrix
no
Visualize intermediate layer activation
yes
User test int
yes
- Cloud
yes
but no computing environnement"
yes
- Cloud Trial period
yes
AutoML
yes
Browser
yes
Python shell
yes
- Desktop
yes (any platform with python)
PALYGAP
on 2018-04-03 21:22:04
Report
Custom cost function
yes
Load Keras Models + Weights
yes
Load Caffe Models + Weights
no
Model checker
yes
Experiments Mangement
yes
- Exp comparison
yes
PALYGAP
on 2018-04-03 21:20:52
Report
- LSTM
yes
- MLP / Auto-encoders
yes
- RNN
yes
Use Keras API
yes
Save Keras HDFS file (.h5)
yes
Save Keras model .yaml file
no
Save Keras model file
no
Load Keras model .yaml file
yes
Load Keras HDFS file (.h5)
yes
Code generation
no
- Theano
no
- Tensorflow/Keras
no
- Caffe (v1)
no
PALYGAP
on 2018-03-30 05:31:33
Report
Tune learning parameter
yes
DL model training
yes
Inference available
yes
Graphical editor provided
yes
PALYGAP
on 2018-03-26 21:05:35
Report
Name
DEEP COGNITION - Deep Learning Studio
PALYGAP
on 2018-03-25 22:39:43
Report
Web Site
http://www.deepcognition.ai
PALYGAP
on 2018-03-25 22:37:30
Report
Web Site
http://www.deepcognition.com
PALYGAP
on 2018-03-25 22:14:36
Report
Mode
70
Name
Deep Learning Studio
Viewer
public
Editor
palygap-1q7klct2
Version of the software
2.0
Underlaying Framework
Apache MXNet
Development Activity
"Important
(2 enhanced versions have been release recently)"
unknown
GPUs
CUDA compatible
DL MODEL EDITOR
Yes
Changing the model is possible by editing the network graph"
DLS Better
- CNN
yes
- LSTM
Yes
- MLP / Auto-encoders
Yes
- RNN
Yes
Pretained Networks
yes (Resnet50, InceptionV3, SqueezeNet, VGG16, VGG19, WideResNet)
Use Keras API
Yes
Save Keras HDFS file (.h5)
Yes
Save Keras model .yaml file
No
Save Keras model file
No
Load Keras model .yaml file
Yes
Load Keras HDFS file (.h5)
Yes
Code generation
No
- Theano
No
- Tensorflow/Keras
No
- Caffe (v1)
No
Custom cost function
Yes
Load Keras Models + Weights
Yes
Load Caffe Models + Weights
No
Model checker
Yes
Datasets Management
yes
Experiments Mangement
Yes
- Exp comparison
Yes
- Prev. Exp loader
Yes
TRAINING
yes
Tune learning parameter
Yes
Live performance monitoring
Yes
Results browser
Yes
INFERENCE
yes
View Valid/test set inference
Yes
Confusion matrix
No
Visualize intermediate layer activation
Yes
User test int
Yes
DEPLOIEMENT
yes
- Rest API
yes
- Cloud
Yes
but no computing environnement"
Yes
- Cloud Trial period
Yes
- Desktop
Yes (any platform with python)
AutoML
Yes
Browser
Yes
Environment management
yes
Python shell
Yes
Jupyter notebook
yes
Documentation
"Minimal
(Keras API)"
"Minimal
(SONY Neural Network Library)"
???
Tutorials
yes
Go back to:
DEEP COGNITION - Deep Learning Studio